Author
Finn, M
Cox, S
Byrne, H
Journal title
Journal of Fluid Mechanics
DOI
10.1017/S0022112003005858
Volume
493
Last updated
2025-06-21T13:39:02.487+01:00
Page
345-361
Abstract
Topological chaos may be used to generate highly effective laminar mixing in a simple batch stirring device. Boyland, Aref & Stremler (2000) have computed a material stretch rate that holds in a chaotic flow, provided it has appropriate topological properties, irrespective of the details of the flow. Their theoretical approach, while widely applicable, cannot predict the size of the region in which this stretch rate is achieved. Here, we present numerical simulations to support the observation of Boyland et al. that the region of high stretch is comparable with that through which the stirring elements move during operation of the device. We describe a fast technique for computing the velocity field for either inviscid, irrotational or highly viscous flow, which enables accurate numerical simulation of dye advection. We calculate material stretch rates, and find close agreement with those of Boyland et al., irrespective of whether the fluid is modelled as inviscid or viscous, even though there are significant differences between the flow fields generated in the two cases.
Symplectic ID
319130
Favourite
Off
Publication type
Journal Article
Publication date
25 Oct 2003
Please contact us with feedback and comments about this page.