Journal title
Representations of Reductive Groups: In Honor of David A Vogan, Jr. on his 60th Birthday
Volume
312
Last updated
2025-05-09T16:21:02.79+01:00
Page
117-137
Abstract
In this paper, we recover certain known results about the ladder
representations of GL(n, Q_p) defined and studied by Lapid, Minguez, and Tadic.
We work in the equivalent setting of graded Hecke algebra modules. Using the
Arakawa-Suzuki functor from category O to graded Hecke algebra modules, we show
that the determinantal formula proved by Lapid-Minguez and Tadic is a direct
consequence of the BGG resolution of finite dimensional simple gl(n)-modules.
We make a connection between the semisimplicity of Hecke algebra modules,
unitarity with respect to a certain hermitian form, and ladder representations.
representations of GL(n, Q_p) defined and studied by Lapid, Minguez, and Tadic.
We work in the equivalent setting of graded Hecke algebra modules. Using the
Arakawa-Suzuki functor from category O to graded Hecke algebra modules, we show
that the determinantal formula proved by Lapid-Minguez and Tadic is a direct
consequence of the BGG resolution of finite dimensional simple gl(n)-modules.
We make a connection between the semisimplicity of Hecke algebra modules,
unitarity with respect to a certain hermitian form, and ladder representations.
Symplectic ID
511175
Download URL
http://arxiv.org/abs/1409.1367v1
Submitted to ORA
On
Favourite
Off
Publication type
Chapter
Publication date
19 Dec 2015