Publication Date:
21 August 2018
Journal:
Canadian Journal of Mathematics
Last Updated:
2019-10-08T04:37:45.583+01:00
DOI:
10.4153/CJM-2018-036-7
abstract:
We study the geometry of infinitely presented groups satisfying the small
cancelation condition C'(1/8), and define a standard decomposition (called the
criss-cross decomposition) for the elements of such groups. We use it to prove
the Rapid Decay property for groups with the stronger small cancelation
property C'(1/10). As a consequence, the Metric Approximation Property holds
for the reduced C*-algebra and for the Fourier algebra of such groups. Our
method further implies that the kernel of the comparison map between the
bounded and the usual group cohomology in degree 2 has a basis of power
continuum. The present work can be viewed as a first non-trivial step towards a
systematic investigation of direct limits of hyperbolic groups.
cancelation condition C'(1/8), and define a standard decomposition (called the
criss-cross decomposition) for the elements of such groups. We use it to prove
the Rapid Decay property for groups with the stronger small cancelation
property C'(1/10). As a consequence, the Metric Approximation Property holds
for the reduced C*-algebra and for the Fourier algebra of such groups. Our
method further implies that the kernel of the comparison map between the
bounded and the usual group cohomology in degree 2 has a basis of power
continuum. The present work can be viewed as a first non-trivial step towards a
systematic investigation of direct limits of hyperbolic groups.
Symplectic id:
369814
Download URL:
Submitted to ORA:
Submitted
Publication Type:
Journal Article