Expander Graphs and Property $\tau$

Thu, 03/05/2012
12:00
Henry Bradford Junior Geometry and Topology Seminar Add to calendar L3
Expander graphs are sparse finite graphs with strong connectivity properties, on account of which they are much sought after in the construction of networks and in coding theory. Surprisingly, the first examples of large expander graphs came not from combinatorics, but from the representation theory of semisimple Lie groups. In this introductory talk, I will outline some of the history of the emergence of such examples from group theory, and give several applications of expander graphs to group theoretic problems.