Journal title
Journal of Mathematical Chemistry
Last updated
2025-07-21T23:50:49.067+01:00
Abstract
An inverse problem framework for constructing reaction systems with
prescribed properties is presented. Kinetic transformations are defined and analysed as a part of the framework, allowing an arbitrary polynomial ordinary differential equation to be mapped to the one that can be represented as a reaction network. The framework is used for construction of specific two- and three-dimensional bistable reaction systems undergoing a supercritical homoclinic bifurcation, and the topology of their phase spaces is discussed.
prescribed properties is presented. Kinetic transformations are defined and analysed as a part of the framework, allowing an arbitrary polynomial ordinary differential equation to be mapped to the one that can be represented as a reaction network. The framework is used for construction of specific two- and three-dimensional bistable reaction systems undergoing a supercritical homoclinic bifurcation, and the topology of their phase spaces is discussed.
Symplectic ID
572425
Submitted to ORA
On
Favourite
Off
Publication type
Journal Article