Journal title
Phys Rev E Stat Nonlin Soft Matter Phys
DOI
10.1103/PhysRevE.88.062702
Issue
6
Volume
88
Last updated
2025-12-04T20:21:43.56+00:00
Page
062702
Abstract
The boundary behavior of axisymmetric microswimming squirmers is theoretically explored within an inertialess Newtonian fluid for a no-slip interface and also a free surface in the small capillary number limit, preventing leading-order surface deformation. Such squirmers are commonly presented as abridged models of ciliates, colonial algae, and Janus particles and we investigate the case of low-mode axisymmetric tangential surface deformations with, in addition, the consideration of a rotlet dipole to represent torque-motor swimmers such as flagellated bacteria. The resulting boundary dynamics reduces to a phase plane in the angle of attack and distance from the boundary, with a simplifying time-reversal duality. Stable swimming adjacent to a no-slip boundary is demonstrated via the presence of stable fixed points and, more generally, all types of fixed points as well as stable and unstable limit cycles occur adjacent to a no-slip boundary with variations in the tangential deformations. Nonetheless, there are constraints on swimmer behavior-for instance, swimmers characterized as pushers are never observed to exhibit stable limit cycles. All such generalities for no-slip boundaries are consistent with observations and more geometrically faithful simulations to date, suggesting the tangential squirmer is a relatively simple framework to enable predications and classifications for the complexities associated with axisymmetric boundary swimming. However, in the presence of a free surface, with asymptotically small capillary number, and thus negligible leading-order surface deformation, no stable surface swimming is predicted across the parameter space considered. While this is in contrast to experimental observations, for example, the free-surface accumulation of sterlet sperm, extensive surfactants are present, most likely invalidating the low capillary number assumption. In turn, this suggests the necessity of surface deformation for stable free-surface three-dimensional finite-size microswimming, as previously highlighted in a two-dimensional mathematical study of singularity swimmers [Crowdy et al., J. Fluid Mech. 681, 24 (2011)].
Symplectic ID
447826
Download URL
https://www.ncbi.nlm.nih.gov/pubmed/24483481
Submitted to ORA
Off
Favourite
Off
Publication type
Journal Article
Publication date
Dec 2013