Consequences of Viscous Anisotropy in Partially Molten Rocks
|
Thu, 02/05 16:00 |
Richard Katz (Oxford) |
Industrial and Applied Mathematics Seminar |
DH 1st floor SR |
| In partially molten regions of Earth, rock and magma coexist as a two-phase aggregate in which the solid grains of rock form a viscously deformable matrix. Liquid magma resides within the permeable network of pores between grains. Deviatoric stress causes the distribution of contact area between solid grains to become anisotropic; this causes anisotropy of the matrix viscosity. The anisotropic viscosity tensor couples shear and volumetric components of stress/strain rate. This coupling, acting over a gradient in shear stress, causes segregation of liquid and solid. Liquid typically migrates toward higher shear stress, but under specific conditions, the opposite can occur. Furthermore, in a two-phase aggregate with a porosity-weakening viscosity, matrix shear causes porosity perturbations to grow into a banded structure. We show that viscous anisotropy reduces the angle between these emergent high-porosity features and the shear plane. This is consistent with lab experiments. | |||
