Journal title
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
DOI
10.1002/num.20495
Issue
6
Volume
26
Last updated
2019-08-18T05:37:32.26+01:00
Page
1377-1404
Abstract
The bidomain model of electrical activity of myocardial tissue consists of a possibly degenerate parabolic PDE coupled with an elliptic PDE for the transmembrane and extracellular potentials, respectively. This system of two scalar PDEs is supplemented by a time-dependent ODE modeling the evolution of the gating variable. In the simpler subcase of the monodomain model, the elliptic PDE reduces to an algebraic equation. Since typical solutions of the bidomain and monodomain models exhibit wavefronts with steep gradients, we propose a finite volume scheme enriched by a fully adaptive multiresolution method, whose basic purpose is to concentrate computational effort on zones of strong variation of the solution. Time adaptivity is achieved by two alternative devices, namely locally varying time stepping and a Runge-Kutta-Fehlberg-type adaptive time integration. A series of numerical examples demonstrates that these methods are efficient and sufficiently accurate to simulate the electrical activity in myocardial tissue with affordable effort. In addition, the optimal choice of the threshold for discarding nonsignificant information in the multiresolution representation of the solution is addressed, and the numerical efficiency and accuracy of the method is measured in terms of CPU time speed-up, memory compression, and errors in different norms. © 2009 Wiley Periodicals, Inc.
Symplectic ID
579551
Download URL
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000282739400008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
Submitted to ORA
Off
Publication type
Journal Article
Publication date
November 2010