Journal title
NETWORKS AND HETEROGENEOUS MEDIA
DOI
10.3934/nhm.2011.6.401
Issue
3
Volume
6
Last updated
2019-06-07T16:54:42.473+01:00
Page
401-423
Abstract
A flow composed of two populations of pedestrians moving in different directions is modeled by a two-dimensional system of convectiondiff usion equations. An efficient simulation of the two-dimensional model is obtained by a finite-volume scheme combined with a fully adaptive multiresolution strategy. Numerical tests show the flow behavior in various settings of initial and boundary conditions, where different species move in countercurrent or perpendicular directions. The equations are characterized as hyperbolicelliptic degenerate, with an elliptic region in the phase space, which in one space dimension is known to produce oscillation waves. When the initial data are chosen inside the elliptic region, a spatial segregation of the populations leads to pattern formation. The entries of the diffusion-matrix determine the stability of the model and the shape of the patterns. © American Institute of Mathematical Sciences.
Symplectic ID
577260
Download URL
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000294891900004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
Submitted to ORA
Off
Publication type
Journal Article
Publication date
September 2011