Journal title
JOURNAL OF COMPUTATIONAL PHYSICS
DOI
10.1016/j.jcp.2013.09.009
Volume
256
Last updated
2019-08-18T05:59:47.137+01:00
Page
806-823
Abstract
This paper is concerned with the study of pattern formation for an inhomogeneous Brusselator model with cross-diffusion, modeling an autocatalytic chemical reaction taking place in a three-dimensional domain. For the spatial discretization of the problem we develop a novel finite volume element (FVE) method associated to a piecewise linear finite element approximation of the cross-diffusion system. We study the main properties of the unique equilibrium of the related dynamical system. A rigorous linear stability analysis around the spatially homogeneous steady state is provided and we address in detail the formation of Turing patterns driven by the cross-diffusion effect. In addition we focus on the spatial accuracy of the FVE method, and a series of numerical simulations confirm the expected behavior of the solutions. In particular we show that, depending on the spatial dimension, the magnitude of the cross-diffusion influences the selection of spatial patterns. © 2013 Elsevier Inc.
Symplectic ID
577253
Download URL
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000326596600043&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
Submitted to ORA
Off
Publication type
Journal Article
Publication date
1 January 2014