Author
Barrett, J
Süli, E
Journal title
Mathematical Models and Methods in Applied Sciences, Vol. 22,
No.5, 2012
Last updated
2024-04-02T23:39:10.17+01:00
Abstract
We show the existence of global-in-time weak solutions to a general class of
coupled Hookean-type bead-spring chain models that arise from the kinetic
theory of dilute solutions of polymeric liquids with noninteracting polymer
chains. The class of models involves the unsteady incompressible Navier-Stokes
equations in a bounded domain in two or three space dimensions for the velocity
and the pressure of the fluid, with an elastic extra-stress tensor appearing on
the right-hand side in the momentum equation. The extra-stress tensor stems
from the random movement of the polymer chains and is defined by the Kramers
expression through the associated probability density function that satisfies a
Fokker-Planck-type parabolic equation, a crucial feature of which is the
presence of a center-of-mass diffusion term. We require no structural
assumptions on the drag term in the Fokker-Planck equation; in particular, the
drag term need not be corotational. With a square-integrable and
divergence-free initial velocity datum for the Navier-Stokes equation and a
nonnegative initial probability density function for the Fokker-Planck
equation, which has finite relative entropy with respect to the Maxwellian of
the model, we prove the existence of a global-in-time weak solution to the
coupled Navier-Stokes-Fokker-Planck system. It is also shown that in the
absence of a body force, the weak solution decays exponentially in time to the
equilibrium solution, at a rate that is independent of the choice of the
initial datum and of the centre-of-mass diffusion coefficient.
Symplectic ID
189217
Download URL
http://arxiv.org/abs/1008.3052v1
Favourite
Off
Publication type
Journal Article
Publication date
18 Aug 2010
Please contact us with feedback and comments about this page. Created on 19 Oct 2011 - 11:07.