Hilbert's Third Problem

9 November 2016
11:30
Alex Margolis
Abstract

Two polyhedra are said to be scissors congruent if they can be subdivided into the same finite number of polyhedra such that each piece in the first polyhedron is congruent to one in the second. In 1900, Hilbert asked if there exist tetrahedra of the same volume which are not scissors congruent. I will give a history of this problem and its proofs, including an incorrect 'proof' by Bricard from 1896 which was only rectified in 2007.