The hunting of the twisted hedgehog

24 April 2017
Epifanio Virga

In the mathematical theory of liquid crystals, a hedgehog is a universal equilibrium solution for Frank's elastic free-energy functional. It is characterized by a radial defect for the nematic director, reminiscent of the way spines are arranged in the spiny mammal. For certain choices of Frank's elastic constants, the free energy stored in a ball subject to radial boundary conditions for the director is minimized by a hedgehog with its defect in the centre of the ball. For other choices of Frank's constants, it is known that a radial hedgehog cannot be a minimizer for this variational problem. We shall gather evidence supporting the conjecture that a "twisted" hedgehog takes the place of a radial hedgehog as an energy minimizer (and we shall not fail to say in which sense it is "twisted"). We shall also show that a twisted hedgehog often accompanies, unseen, a radial hedgehog, as its virtual double, ready to beat its energy as a certain elastic anisotropy is reached.

  • Partial Differential Equations Seminar