Finiteness properties of subgroups of hyperbolic groups

9 February 2017
16:00
Giles Gardam
Abstract

Hyperbolic groups were introduced by Gromov and generalize the fundamental groups of closed hyperbolic manifolds. Since a closed hyperbolic manifold is aspherical, it is a classifying space for its fundamental group, and a hyperbolic group will also admit a compact classifying space in the torsion-free case. After an introduction to this and other topological finiteness properties of hyperbolic groups and their subgroups, we will meet a construction of R. Kropholler, building on work of Brady and Lodha. The construction gives an infinite family of hyperbolic groups with finitely-presented subgroups which are non-hyperbolic by virtue of their finiteness properties. We conclude with progress towards determining minimal examples of the "sizeable" graphs which are needed as input to the construction.

  • Junior Geometry and Topology Seminar