2-Segal spaces and higher categorical bialgebras

8 May 2017
15:45
Mark Penney
Abstract


An efficient way to descibe binary operations which are associative only up to coherent homotopy is via simplicial spaces. 2-Segal spaces were introduced independently by Dyckerhoff--Kapranov and G\'alvez-Carrillo--Kock--Tonks to encode spaces carrying multivalued, coherently associative products. For example, the Waldhausen S-construction of an abelian category is a 2-Segal space. It describes a multivalued product on the space of objects given in terms of short exact sequences. 
The main motivation to study spaces carrying multivalued products is that they can be linearised, producing algebras in the usual sense of the word. For the preceding example, the linearisation yields the Hall algebra of the abelian category. One can also extract tensor categories using a categorical linearisation procedure.
In this talk I will discuss double 2-Segal spaces, that is, bisimplicial spaces which satisfy the 2-Segal condition in each variable. Such bisimplicial spaces give rise to multivalued bialgebras. The second iteration of the Waldhausen S-construction is a double 2-Segal space whose linearisation is the bialgebra structure given by Green's Theorem. The categorial linearisation produces categorifications of Zelevinsky's positive, self-adjoint Hopf algebras.