Are CAT(0) spaces determined by their boundaries?

12 June 2017
Ruth Charney

Boundaries of hyperbolic spaces have played a key role in low dimensional topology and geometric group theory.  In 1993, Paulin showed that the topology of the boundary of a (Gromov) hyperbolic space, together with its quasi-mobius structure, determines the space up to quasi-isometry.  One can define an analogous boundary, called the Morse boundary, for any proper geodesic metric space.  I will discuss an analogue of Paulin’s theorem for Morse boundaries of CAT(0) spaces. (Joint work with Devin Murray.)