Author
Cooper, F
Baker, R
Fletcher, A
Journal title
SIAM Journal on Scientific Computing
DOI
10.1137/16M1092246
Issue
5
Volume
39
Last updated
2024-04-27T05:43:49.89+01:00
Page
B943-B967
Abstract
Mathematical modelling provides a useful framework within which to investigate the organization of biological tissues. With advances in experimental biology leading to increasingly detailed descriptions of cellular behaviour, models that consider cells as individual objects are be- coming a common tool to study how processes at the single-cell level affect collective dynamics and determine tissue size, shape and function. However, there often remains no comprehensive account of these models, their method of solution, computational implementation or analysis of parameter scaling, hindering our ability to utilise and accurately compare different models. Here we present an efficient, open-source implementation of the immersed boundary (IB) method, tailored to simulate the dynamics of cell populations. This approach considers the dynamics of elastic membranes, repre- senting cell boundaries, immersed in a viscous Newtonian fluid. The IB method enables complex and emergent cell shape dynamics, spatially heterogeneous cell properties and precise control of growth mechanisms. We solve the model numerically using an established algorithm, based on the fast Fourier transform, providing full details of all technical aspects of our implementation. The imple- mentation is undertaken within Chaste, an open-source C++ library that allows one to easily change constitutive assumptions. Our implementation scales linearly with time step, and subquadratically with mesh spacing and immersed boundary node spacing. We identify the relationship between the immersed boundary node spacing and fluid mesh spacing required to ensure fluid volume conserva- tion within immersed boundaries, and the scaling of cell membrane stiffness and cell-cell interaction strength required when refining the immersed boundary discretization. Finally, we present a simu- lation study of a growing epithelial tissue to demonstrate the applicability of our implementation to relevant biological questions, highlighting several features of the IB method that make it well suited to address certain questions in epithelial morphogenesis.
Symplectic ID
709119
Favourite
Off
Publication type
Journal Article
Publication date
03 Oct 2017
Please contact us with feedback and comments about this page. Created on 25 Jul 2017 - 09:22.