Date
Tue, 17 Oct 2017
Time
12:00 - 13:15
Location
L4
Speaker
Jorma Louko
Organisation
Nottingham

How long does a uniformly accelerated observer need to interact with a
quantum field in order to record thermality in the Unruh temperature?
In the limit of large excitation energy, the answer turns out to be
sensitive to whether (i) the switch-on and switch-off periods are
stretched proportionally to the total interaction time T, or whether
(ii) T grows by stretching a plateau in which the interaction remains
at constant strength but keeping the switch-on and switch-off
intervals of fixed duration. For a pointlike Unruh-DeWitt detector,
coupled linearly to a massless scalar field in four spacetime
dimensions and treated within first order perturbation theory, we show
that letting T grow polynomially in the detector's energy gap E
suffices in case (i) but not in case (ii), under mild technical
conditions. These results limit the utility of the large E regime as a

probe of thermality in time-dependent versions of the Hawking and
Unruh effects, such as an observer falling into a radiating black
hole. They may also have implications on the design of prospective
experimental tests of the Unruh effect.

Based on arXiv:1605.01316 (published in CQG) with Christopher J
Fewster and Benito A Juarez-Aubry.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.