Algorithms determining finite simple images of finitely presented groups

Author: 

Bridson, M
Evans, D
Liebeck, M
Segal, D

Publication Date: 

1 January 2019

Journal: 

Inventiones Mathematicae

Last Updated: 

2019-08-25T18:15:21.28+01:00

DOI: 

10.1007/s00222-019-00892-3

abstract: 

© 2019, The Author(s). We address the question: for which collections of finite simple groups does there exist an algorithm that determines the images of an arbitrary finitely presented group that lie in the collection? We prove both positive and negative results. For a collection of finite simple groups that contains infinitely many alternating groups, or contains classical groups of unbounded dimensions, we prove that there is no such algorithm. On the other hand, for families of simple groups of Lie type of bounded rank, we obtain positive results. For example, for any fixed untwisted Lie type X there is an algorithm that determines whether or not any given finitely presented group has simple images of the form X(q) for infinitely many q, and if there are finitely many, the algorithm determines them.

Symplectic id: 

738110

Submitted to ORA: 

Submitted

Publication Type: 

Journal Article