Seminar series
Date
Mon, 27 Nov 2017
12:45
Location
L3
Speaker
Albrecht Klemm
Organisation
Bonn

We consider the one parameter mirror families W of the Calabi-Yau 3-folds with Picard-Fuchs  equations of hypergeometric type. By mirror symmetry the  even D-brane masses of orginial Calabi-Yau manifolds M can be identified with four periods with respect to an integral symplectic basis of $H_3(W,\mathbb{Z})$ at the point of maximal unipotent monodromy. We establish that the masses of the D4 and D2 branes at the conifold are given by the two algebraically independent values of the L-function of the weight four holomorphic Hecke eigenform with eigenvalue one of $\Gamma_0(N)$. For the quintic in  $\mathbb{P}^4$ it this Hecke eigenform of $\Gamma_0(25)$ was as found by Chad Schoen.  It was discovered  by de la Ossa, Candelas and Villegas that  its  coefficients $a_p$ count the number of  solutions of  the mirror quinitic at the conifold over the finite number field $\mathbb{F}_p$ . Using the theory of periods and quasi-periods of $\Gamma_0(N)$ and the special geometry pairing on Calabi-Yau 3 folds we can fix further values in the connection matrix between the maximal unipotent monodromy point and the conifold point.  

 
 
 
 
Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.