Uniqueness of degree-one Ginzburg-Landau vortex in the unit ball in dimensions N >= 7

Author: 

Ignat, R
Nguyen, L
Slastikov, V
Zarnescu, A

Publication Date: 

September 2018

Journal: 

COMPTES RENDUS MATHEMATIQUE

Last Updated: 

2019-04-27T06:51:34.073+01:00

Issue: 

9

Volume: 

356

DOI: 

10.1016/j.crma.2018.07.006

page: 

922-926

abstract: 

© 2018 Académie des sciences For ε>0, we consider the Ginzburg–Landau functional for RN-valued maps defined in the unit ball BN⊂RNwith the vortex boundary data x on ∂BN. In dimensions N≥7, we prove that, for every ε>0, there exists a unique global minimizer uεof this problem; moreover, uεis symmetric and of the form uε(x)=fε(|x|)[Formula presented] for x∈BN.

Symplectic id: 

869329

Download URL: 

Submitted to ORA: 

Submitted

Publication Type: 

Journal Article