The non-linear sewing lemma and Rough Differential Equations

12 November 2018
15:45
ANTOINE LEJAY
Abstract

Solutions to Rough Differential Equations (RDE) may be constructed by several means. Beyond the fixed point argument, several approaches rely on using approximations of solutions over short times (Davie, Friz & Victoir, Bailleul, ...). In this talk, we present a generic, unifying framework to consider approximations of flows, called almost flows, and flows through the non-linear sewing lemma. This framework unifies the approaches mentioned above and decouples the analytical part from the algebraic part (manipulation of iterated integrals) when studying RDE. Beyond this, flows are objects with their own properties.New results, such as existence of measurable flows when several solutions of the corresponding RDE exist, will also be presented.

From a joint work with Antoine Brault (U. Toulouse III, France).

 

  • Stochastic Analysis Seminar