Publication Date:
29 January 2019
Journal:
Journal of High Energy Physics
Last Updated:
2021-01-15T14:45:15.033+00:00
Issue:
1
Volume:
2019
DOI:
10.1007/JHEP01(2019)212
abstract:
We consider supersymmetric AdS3 × Y7 and AdS2 × Y9 solutions of type IIB and D = 11 supergravity, respectively, that are holographically dual to SCFTs with (0, 2) supersymmetry in two dimensions and N = 2 supersymmetry in one dimension. The geometry of Y2n+1, which can be defined for n ≥ 3, shares many similarities with SasakiEinstein geometry, including the existence of a canonical R-symmetry Killing vector, but there are also some crucial differences. We show that the R-symmetry Killing vector may be determined by extremizing a function that depends only on certain global, topological data. In particular, assuming it exists, for n = 3 one can compute the central charge of an AdS3 × Y7 solution without knowing its explicit form. We interpret this as a geometric dual of c-extremization in (0, 2) SCFTs. For the case of AdS2 × Y9 solutions we show that the extremal problem can be used to obtain properties of the dual quantum mechanics, including obtaining the entropy of a class of supersymmetric black holes in AdS4. We also study many specific examples of the type AdS3×T 2×Y5, including a new family of explicit supergravity solutions. In addition we discuss the possibility that the (0, 2) SCFTs dual to these solutions can arise from the compactification on T 2 of certain d = 4 quiver gauge theories associated with five-dimensional Sasaki-Einstein metrics and, surprisingly, come to a negative conclusion.
Symplectic id:
965584
Submitted to ORA:
Submitted
Publication Type:
Journal Article