Date
Thu, 04 Jul 2019
Time
14:00 - 15:30
Location
C3
Speaker
Dr. Kannabiran Seshasayanan
Organisation
CEA Paris-Saclay

We study the stability properties of the Eulerian mean flow generated by monochromatic surface-gravity waves propagating in a rotating frame. The wave averaged equations, also known as the Craik-Leibovich equations, govern the evolution of the mean flow. For propagating waves in a rotating frame these equations admit a steady depth-dependent base flow sometimes called the Ekman-Stokes spiral, because of its resemblance to the standard Ekman spiral. This base flow profile is controlled by two non-dimensional numbers, the Ekman number Ek and the Rossby number Ro. We show that this steady laminar velocity profile is linearly unstable above a critical Rossby number Roc(Ek). We determine the threshold Rossby number as a function of Ek using a numerical eigenvalue solver, before confirming the numerical results through asymptotic expansions in the large/low Ek limit. These were also confirmed by nonlinear simulations of the Craik-Leibovich equations. When the system is well above the linear instability threshold, Ro >> Roc, the resulting flow fluctuates chaotically. We will discuss the possible implications in an oceanographic context, as well as for laboratory experiments.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.