A decomposition of the Brownian excursion

11 November 2019
14:15
ANTON WAKOLBINGER
Abstract

We discuss a realizationwise correspondence between a Brownian  excursion (conditioned to reach height one) and a triple consisting of

(1) the local time profile of the excursion,

(2) an array of independent time-homogeneous Poisson processes on the real line, and

(3) a fair coin tossing sequence,  where (2) and (3) encode the ordering by height respectively the left-right ordering of the subexcursions.

The three components turn out to be independent,  with (1) giving a time change that is responsible for the time-homogeneity of the Poisson processes.

 By the Ray-Knight theorem, (1) is the excursion of a Feller branching diffusion;  thus the metric structure associated with (2), which generates the so-called lookdown space, can be seen as representing the genealogy underlying the Feller branching diffusion. 

Because of the independence of the three components, up to a time change the distribution of this genealogy does not change under a conditioning on the local time profile. This gives also a natural access to genealogies of continuum populations under competition,  whose population size is modeled e.g. by the Fellerbranching diffusion with a logistic drift.

The lecture is based on joint work with Stephan Gufler and Goetz Kersting.

 

  • Stochastic Analysis & Mathematical Finance Seminars