Lie polynomials and a Penrose transform for the double copy

3 December 2019
12:00
Lionel Mason
Abstract

This talk will explain how Lie polynomials underpin the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides).  ABHY have recently shown that Lie polynomials arise naturally also in the geometry of the space K_n of momentum invariants, Mandelstams, and can be expressed in the space of n-3-forms dual to certain associahedral (n-3)-planes. They also arise in the moduli space M_{0,n} of n points on a Riemann sphere up to Mobius transformations in the n-3-dimensional homology.  The talk goes on to give a natural correspondendence between K_n and the cotangent bundle of M_{0.n} through which the relationships of some of these structures can be expressed.  This in particular gives a natural framework for expressing the CHY and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories and goes some way to expressing their double copy relations.   This is part of joint work in progress with Hadleigh Frost.