Coarse geometry of spaces and groups

17 February 2020
15:45
David Hume
Abstract


Given two metric spaces $X$ and $Y$, it is natural to ask how faithfully, from the point of view of the metric, one can embed $X$ into $Y$. One way of making this precise is asking whether there exists a coarse embedding of $X$ into $Y$. Positive results are plentiful and diverse, from Assouad's embedding theorem for doubling metric spaces to the elementary fact that any finitely generated subgroup of a finitely generated group is coarsely embedded with respect to word metrics. Moreover, the consequences of admitting a coarse embedding into a sufficiently nice space can be very strong. By contrast, there are few invariants which provide obstructions to coarse embeddings, leaving many seemingly elementary geometric questions open.
I will present new families of invariants which resolve some of these questions. Highlights of the talk include a new algebraic dichotomy for connected unimodular Lie groups, and a method of calculating a lower bound on the conformal dimension of a compact Ahlfors-regular metric space.