Date
Mon, 26 Oct 2020
Time
16:00 - 17:00
Speaker
STEVE SHREVE
Organisation
Carnegie Mellon Univeristy

Trading of financial instruments has largely moved away from floor trading and onto electronic exchanges. Orders to buy and sell are queued at these exchanges in a limit-order book. While a full analysis of the dynamics of a limit-order book requires an understanding of strategic play among multiple agents, and is thus extremely complex, so-called zero-intelligence Poisson models have been shown to capture many of the statistical features of limit-order book evolution. These models can be addressed by traditional queueing theory techniques, including Laplace transform analysis. In this work, we demonstrate in a simple setting that another queueing theory technique, approximating the Poisson model by a diffusion model identified as the limit of a sequence of scaled Poisson models, can also be implemented. We identify the diffusion limit, find an embedded semi-Markov model in the limit, and determine the statistics of the embedded semi-Markov model. Along the way, we introduce and study a new type of process, a generalization of skew Brownian motion that we call two-speed Brownian motion.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.