On the sum of positive divisors functions

Author: 

Erban, R
Van Gorder, R

Publication Date: 

22 March 2021

Journal: 

Research in Number Theory

Last Updated: 

2021-10-11T14:29:09.64+01:00

Volume: 

7

DOI: 

10.1007/s40993-021-00240-6

abstract: 

<p>Properties of divisor functions&nbsp;<span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msub&gt;&lt;mi&gt;&amp;#x03C3;&lt;/mi&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/msub&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;">&sigma;k(n)&sigma;k(n)</span>, defined as sums of&nbsp;<em>k</em>-th powers of all divisors of&nbsp;<em>n</em>, are studied through the analysis of Ramanujan&rsquo;s differential equations. This system of three differential equations is singular at&nbsp;<span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;">x=0x=0</span>. Solution techniques suitable to tackle this singularity are developed and the problem is transformed into an analysis of a dynamical system. Number theoretical consequences of the presented dynamical system analysis are then discussed, including recursive formulas for divisor functions.</p>

Symplectic id: 

1161323

Submitted to ORA: 

Submitted

Publication Type: 

Journal Article