Learning developmental path signature features with deep learning framework for infant cognitive scores prediction

21 April 2021
09:00
Abstract

Path signature has unique advantages on extracting high-order differential features of sequential data. Our team has been studying the path signature theory and actively applied it to various applications, including infant cognitive score prediction, human motion recognition, hand-written character recognition, hand-written text line recognition and writer identification etc. In this talk, I will share our most recent works on infant cognitive score prediction using deep path signature. The cognitive score can reveal individual’s abilities on intelligence, motion, language abilities. Recent research discovered that the cognitive ability is closely related with individual’s cortical structure and its development. We have proposed two frameworks to predict the cognitive score with different path signature features. For the first framework, we construct the temporal path signature along the age growth and extract signature features of developmental infant cortical features. By incorporating the cortical path signature into the multi-stream deep learning model, the individual cognitive score can be predicted with missing data issues. For the second framework, we propose deep path signature algorithm to compute the developmental feature and obtain the developmental connectivity matrix. Then we have designed the graph convolutional network for the score prediction. These two frameworks have been tested on two in-house cognitive data sets and reached the state-of-the-art results.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).