Date
Fri, 04 Jun 2021
16:00
Speaker
Paolo Milan
Organisation
Technion

In this talk I will present a gravitational interpretation for the superconformal index of N = 4 SYM theory in the large N limit. I will start by reviewing the so-called Bethe Ansatz formulation of the field theory index and its large N expansion (which includes both perturbative and non-perturbative corrections in 1/N). In the gravity side, according the rules of AdS/CFT correspondence, the index—interpreted as the supersymmetric partition function of N = 4 SYM—should be equivalent to the gravitational partition function on AdS_5 x S^5. The latter is classically evaluated as a sum over Euclidean gravity solutions with appropriate boundary conditions. In this context, I will show that (in the case of equal angular momenta) the contribution to the index of each Bethe Ansatz solution that admits a proper large N limit is captured by a complex black hole solution in the gravity side, which reproduces both its perturbative and non-perturbative behavior. More specifically, the number of putative black hole solutions turns out to be much larger than the number of Bethe Ansatz solutions. A resolution of this issue is found by requiring the gravity solutions to be “stable” under the non-perturbative corrections. This ensures that all the extra gravity solutions are ruled out and leads to a precise match between field theory and gravity.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.