Date
Mon, 25 Oct 2004
14:15
Location
DH 3rd floor SR
Speaker
Dr J Warren
Organisation
University of Warwick

I will consider a stochastic process ( \xi_u; u \in

\Gamma_\infty ) where \Gamma_\infty is the set of vertices of an

infinite binary tree which satisfies some recursion relation

\xi_u= \phi(\xi_{u0},\xi_{u1}, \epsilon_u) \text { for each } u \in \Gamma_\infty.

Here u0 and u1 denote the two immediate daughters of the vertex u.

The random variables ( \epsilon_u; u\in \Gamma_\infty), which

are to be thought of as innovations, are supposed independent and

identically distributed. This type of structure is ubiquitous in models

coming from applied proability. A recent paper of Aldous and Bandyopadhyay

has drawn attention to the issue of endogeny: that is whether the process

( \xi_u; u \in \Gamma_\infty) is measurable with respect to the

innovations process. I will explain how this question is related to the

existence of certain dynamics and use this idea to develop a necessary and

sufficient condition [ at least if S is finite!] for endogeny in terms of

the coupling rate for a Markov chain on S^2 for which the diagonal is

absorbing.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.