On a class of quasilinear parabolic equations

2 May 2005
Matania Ben-Artzi
An important class of nonlinear parabolic equations is the class of quasi-linear equations, i.e., equations with a leading second-order (in space) linear part (e.g., the Laplacian) and a nonlinear part which depends on the first-order spatial derivatives of the unknown function. This class contains the Navier-Stokes system of fluid dynamics, as well as "viscous" versions (or "regularized") of the Hamilton-Jacobi equation, nonlinear hyperbolic conservation laws and more. The talk will present various recent results concerning existence/uniqueness (and nonexistence/nonuniqueness) of global solutions. In addition, a new class of "Bernstein-type" estimates of derivatives will be presented. These estimates are independent of the viscosity parameter and thus lead to results concerning the "zero-viscosity" limit.
  • Applied Analysis and Mechanics Seminar