Date
Tue, 29 Nov 2022
Time
12:30 - 13:00
Location
C3
Speaker
Roisin Stephens

Baseline T cell infiltration and the spatial distribution of T cells within a tumour has been found to be a significant indicator of patient outcomes. This observation, coupled with the increasing availability of spatially-resolved imaging data of individual cells within the tumour tissue, motivates the development of mathematical models which capture the spatial dynamics of T cells. Agent-based models allow the simulation of complex biological systems with detailed spatial resolution, and generate rich spatio-temporal datasets. In order to fully leverage the information contained within these simulated datasets, spatial statistics provide methods of analysis and insight into the biological system modelled, by quantifying inherent spatial heterogeneity within the system. We present a cellular automaton model of interactions between tumour cells and cytotoxic T cells, and an analysis of the model dynamics, considering both the temporal and spatial evolution of the system. We use the model to investigate some of the standard assumptions made in these models, to assess the suitability of the models to accurately describe tumour-immune dynamics.

Please contact us with feedback and comments about this page. Last updated on 28 Nov 2022 08:41.