Date
Thu, 24 Jan 2008
Time
13:30 - 14:30
Location
L3
Speaker
Johannes Siemons
Organisation
East Anglia

For the integers $a$ and $b$ let $P(a^b)$ be all partitions of the

set $N= {1,..., ab}$ into parts of size $a.$ Further, let

$\mathbb{C}P (a^b)$ be the corresponding permutation module for the

symmetric group acting on $N.$ A conjecture of Foulkes says

that $\mathbb{C}P (a^b)$ is isomorphic to a submodule of $\mathbb{C}P

(b^a)$ for all $a$ not larger than $b.$ The conjecture goes back to

the 1950's but has remained open. Nevertheless, for some values of

$b$ there has been progress. I will discuss some proofs and further

conjectures. There is a close correspondence between the

representations of the symmetric groups and those of the general

linear groups, via Schur-Weyl duality. Foulkes' conjecture therefore

has implications for $GL$-representations. There are interesting

connections to classical invariant theory which I hope to mention.

Please contact us with feedback and comments about this page. Last updated on 10 Oct 2023 15:37.