Date
Mon, 03 Mar 2008
14:45
Location
Oxford-Man Institute
Speaker
Prof. Balint Toth
Organisation
Budapest

I will present two new results in the context of the title. Both are joint work with B. Veto.

1. In earlier work a limit theorem with $t^{2/3}$ scaling was established for a class of self repelling random walks on $\mathbb Z$ with long memory, where the self-interaction was defined in terms of the local time spent on unoriented edges. For combinatorial reasons this proof was not extendable to the natural case when the self-repellence is defined in trems of local time on sites. Now we prove a similar result for a *continuous time* random walk on $\mathbb Z$, with self-repellence defined in terms of local time on sites.

2. Defining the self-repelling mechanism in terms of the local time on *oriented edges* results in totally different asymptotic behaviour than the unoriented cases. We prove limit theorems for this random walk with long memory.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.