The Modular Flow

29 February 2008
Professor Etienne Ghys
A lattice in the plane is a discrete subgroup in R^2 isomorphic to Z^2 ; it is unimodular if the area of the quotient is 1. The space of unimodular lattices is a venerable object in mathematics related to topology, dynamics and number theory. In this talk, I'd like to present a guided tour of this space, focusing on its topological aspect. I will describe in particular the periodic orbits of the modular flow, giving rise to beautiful "modular knots". I will show some animations