Date
Mon, 15 May 2023
16:00
Location
C3
Speaker
Thomas Karam
Organisation
University of Oxford

Let $p$ be a prime, let $1 \le t < d < p$ be integers, and let $S$ be a non-empty subset of $\mathbb{F}_p$ (which may be thought of as being $\{0,1\}$). We will establish that if a polynomial $P:\mathbb{F}_p^n \to \mathbb{F}_p$ with degree $d$ is such that the image $P(S^n)$ does not contain the full image $A(\mathbb{F}_p)$ of any non-constant polynomial $A: \mathbb{F}_p \to \mathbb{F}_p$ with degree at most $t$, then $P$ coincides on $S^n$ with a polynomial $Q$ that in particular has bounded degree-$\lfloor d/(t+1) \rfloor$-rank in the sense of Green and Tao, and has degree at most $d$. Likewise, we will prove that if the assumption holds even for $t=d$ then $P$ coincides on $S^n$ with a polynomial determined by a bounded number of coordinates and with degree at most $d$.

Please contact us with feedback and comments about this page. Last updated on 15 May 2023 09:50.