Seminar series
Date
Thu, 28 Feb 2008
10:00
Location
Gibson 1st Floor SR
Speaker
Patrizio Neff
We are concerned with the derivation of the Γ-limit to a three dimensional geometrically exact Cosserat model as the relative thickness h > 0 of a at domain tends to zero. The Cosserat bulk model involves already exact rotations as a second independent field and this model is meant to describe defective elastic crystals liable to fracture under shear.
It is shown that the Γ-limit based on a natural scaling assumption con- sists of a membrane like energy contribution and a homogenized transverse shear energy both scaling with h, augmented by an additional curvature stiffness due to the underlying Cosserat bulk formulation, also scaling with h. No specific bending term appears in the dimensional homogenization process. The formulation exhibits an internal length scale Lc which sur- vives the homogenization process. A major technical difficulty, which we encounter in applying the Γ-convergence arguments, is to establish equi- coercivity of the sequence of functionals as the relative thickness h tends to zero. Usually, equi-coercivity follows from a local coerciveness assump- tion. While the three-dimensional problem is well-posed for the Cosserat couple modulus μc ≥ 0, equi-coercivity forces us to assume a strictly pos- itive Cosserat couple modulus μc > 0. The Γ-limit model determines the midsurface deformation m ∈ H1,2(ω;R3). For the case of zero Cosserat couple modulus μc= 0 we obtain an estimate of the Γ - lim inf and Γ - lim sup, without equi-coercivity which is then strenghtened to a Γ- convergence result for zero Cosserat couple modulus. The classical linear Reissner-Mindlin model is "almost" the linearization of the Γ-limit for μc = 0 apart from a stabilizing shear energy term.
Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.