Some results concerning the q-optimal martingale measure

28 April 2008
15:45
Dr Sotirios Sabanis
Abstract
An important and challenging problem in mathematical finance is how to choose a pricing measure in an incomplete market, i.e. how to find a probability measure under which expected payoffs are calculated and fair option prices are derived under some notion of optimality. The notion of q-optimality is linked to the unique equivalent martingale measure (EMM) with minimal q-moment (if q > 1) or minimal relative entropy (if q=1). Hobson's (2004) approach to identifying the q-optimal measure (through a so-called fundamental equation) suggests a relaxation of an essential condition appearing in Delbaen & Schachermayer (1996). This condition states that for the case q=2, the Radon-Nikodym process, whose last element is the density of the candidate measure, is a uniformly integrable martingale with respect to any EMM with a bounded second moment. Hobson (2004) alleges that it suffices to show that the above is true only with respect to the candidate measure itself and extrapolates for the case q>1. Cerny & Kallsen (2008) however presented a counterexample (for q=2) which demonstrates that the above relaxation does not hold in general. The speaker will present the general form of the q-optimal measure following the approach of Delbaen & Schachermayer (1994) and prove its existence under mild conditions. Moreover, in the light of the counterexample in Cerny & Kallsen (2008) concerning Hobson's (2004) approach, necessary and sufficient conditions will be presented in order to determine when a candidate measure is the q-optimal measure.
  • Stochastic Analysis Seminar