Date
Thu, 19 Oct 2023
Time
14:00 - 15:00
Location
Lecture Room 3
Speaker
Tammy Kolda
Organisation
mathsci.ai

Randomized least squares is a promising method but not yet widely used in practice. We show an example of its use for finding low-rank canonical polyadic (CP) tensor decompositions for large sparse tensors. This involves solving a sequence of overdetermined least problems with special (Khatri-Rao product) structure.

In this work, we present an application of randomized algorithms to fitting the CP decomposition of sparse tensors, solving a significantly smaller sampled least squares problem at each iteration with probabilistic guarantees on the approximation errors. We perform sketching through leverage score sampling, crucially relying on the fact that the problem structure enable efficient sampling from overestimates of the leverage scores with much less work. We discuss what it took to make the algorithm practical, including general-purpose improvements.

Numerical results on real-world large-scale tensors show the method is faster than competing methods without sacrificing accuracy.

*This is joint work with Brett Larsen, Stanford University.

Please contact us with feedback and comments about this page. Last updated on 19 Sep 2023 15:14.