Seminar series
Date
Thu, 15 Feb 2024
Time
16:00 - 17:00
Location
Virtual
Speaker
Christa Cuchiero
Organisation
University of Vienna

A plethora of stochastic models used in particular in mathematical finance, but also population genetics and physics, stems from the class of affine and polynomial processes. The history of these processes is on the one hand closely connected with the important concept of tractability, that is a substantial reduction of computational efforts due to special structural features, and on the other hand with a unifying framework for a large number of probabilistic models. One early instance in the literature where this unifying affine and polynomial point of view can be applied is Lévy's stochastic area formula. Starting from this example,  we present a guided tour through the main properties and recent results, which lead to signature stochastic differential equations (SDEs). They constitute a large class of stochastic processes, here driven by Brownian motions, whose characteristics are entire or real-analytic functions of their own signature, i.e. of iterated integrals of the process with itself, and allow therefore for a generic path dependence. We show that their prolongation with the corresponding signature is an affine and polynomial process taking values in subsets of group-like elements of the extended tensor algebra. Signature SDEs are thus a class of stochastic processes, which is universal within Itô processes with path-dependent characteristics and which allows - due to the affine theory - for a relatively explicit characterization of the Fourier-Laplace transform and hence the full law on path space.

Further Information

Please contact us with feedback and comments about this page. Last updated on 23 Jan 2024 12:21.