Seminar series
Date
Wed, 26 Nov 2008
Time
13:30 - 14:30
Location
Gibson 1st Floor SR
Speaker
Eduard Kirr
Organisation
University of Illinois at Urbana Champaign, USA

The talk will survey old and recent applications of variational techniques in studying the existence, stability and bifurcations of time harmonic, localized in space solutions of the nonlinear Schroedinger equation (NLS). Such solutions are called solitons, when the equation is space invariant, and bound-states, when it is not. Due to the Hamiltonian structure of NLS, solitons/bound-states can be characterized as critical points of the energy functional restricted to sets of functions with fixed $L^2$ norm.

In general, the energy functional is not convex, nor is the set of functions with fixed $L^2$ norm closed under weak convergence. Hence the standard variational arguments fail to imply existence of global minimizers. In addition for ``critical" and ``supercritical" nonlinearities the restricted energy functional is not bounded from below. I will first review the techniques used to overcome these drawbacks.

Then I will discuss recent results in which the characterizations of bound-states as critical points (not necessarily global minima) of the restricted energy functional is used to show their orbital stability/instability with respect to the nonlinear dynamics and symmetry breaking phenomena as the $L^2$ norm of the bound-state is varied.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.