Localized structures in elastic sheets: From a ruck in a rug to flexible electronics

21 May 2009
16:30
Dominic Vella
Abstract
An elastic sheet will buckle out of the plane when subjected to an in-plane compression. In the simplest systems the typical lengthscale of the buckled structure is that of the system itself but with additional physics (e.g. an elastic substrate) repeated buckles with a well-defined wavelength may be seen. We discuss two examples in which neither of these scenarios is realized: instead a small number of localized structures are observed with a size different to that of the system itself. The first example is a heavy sheet on a rigid floor - a ruck in a rug. We study the static properties of these rucks and also how they propagate when one end of the rug is moved quickly. The second example involves a thin film adhered to a much softer substrate. Here delamination blisters are formed with a well-defined size, which we characterize in terms of the material properties of the system. We then discuss the possible application of these model systems to real world problems ranging from the propagation of slip pulses in earthquakes to the manufacture of flexible electronic devices."
  • Differential Equations and Applications Seminar