Date
Thu, 26 Nov 2009
Time
16:30 - 17:30
Location
DH 1st floor SR
Speaker
Tim Myers
Organisation
Barcelona

Modelling phase change in the presence of a flowing thin liquid film

There are numerous physical phenomena that involve a melting solid

surrounded by a thin layer of liquid, or alternatively a solid

forming from a thin liquid layer. This talk will involve two such

problems, namely contact melting and the Leidenfrost phenomenon.

Contact melting occurs, for example, when a solid is placed on a

surface that is maintained at a temperature above the solid melting

temperature. Consequently the solid melts, while the melt layer is

squeezed out from under the solid due to its weight. This process

has applications in metallurgy, geology and nuclear technology, and

also describes a piece of ice melting on a table. Leidenfrost is

similar, but involves a liquid droplet evaporating after being

placed on a hot substrate. This has applications in cooling systems

and combustion of fuel or a drop of water on a hot frying pan.

The talk will begin with a brief introduction into one-dimensional

Stefan problems before moving on to the problem of melting coupled

to flow. Mathematical models will be developed, analysed and

compared with experimental results. Along the way the Heat Balance

Integral Method (HBIM) will be introduced. This is a well-known

method primarily used by engineers to approximate the solution of

thermal problems. However, it has not proved so popular with

mathematicians, due to the arbitrary choice of approximating

function and a lack of accuracy. The method will be demonstrated on

a simple example, then it will be shown how it may be modified to

significantly improve the accuracy. In fact, in the large Stefan

number limit the modified method can be shown to be more accurate

than the asymptotic solution to second order.

Please contact us with feedback and comments about this page. Last updated on 10 Oct 2023 16:32.