Date
Thu, 15 Oct 2009
Time
14:00 - 15:00
Location
3WS SR
Speaker
Prof. Gitta Kutyniok
Organisation
University of Osnabruck

During the last two years, sparsity has become a key concept in various areas

of applied mathematics, computer science, and electrical engineering. Sparsity

methodologies explore the fundamental fact that many types of data/signals can

be represented by only a few non-vanishing coefficients when choosing a suitable

basis or, more generally, a frame. If signals possess such a sparse representation,

they can in general be recovered from few measurements using $\ell_1$ minimization

techniques.

One application of this novel methodology is the geometric separation of data,

which is composed of two (or more) geometrically distinct constituents -- for

instance, pointlike and curvelike structures in astronomical imaging of galaxies.

Although it seems impossible to extract those components -- as there are two

unknowns for every datum -- suggestive empirical results using sparsity

considerations have already been obtained.

In this talk we will first give an introduction into the concept of sparse

representations and sparse recovery. Then we will develop a very general

theoretical approach to the problem of geometric separation based on these

methodologies by introducing novel ideas such as geometric clustering of

coefficients. Finally, we will apply our results to the situation of separation

of pointlike and curvelike structures in astronomical imaging of galaxies,

where a deliberately overcomplete representation made of wavelets (suited

to pointlike structures) and curvelets/shearlets (suited to curvelike

structures) will be chosen. The decomposition principle is to minimize the

$\ell_1$ norm of the frame coefficients. Our theoretical results, which

are based on microlocal analysis considerations, show that at all sufficiently

fine scales, nearly-perfect separation is indeed achieved.

This is joint work with David Donoho (Stanford University).

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.