Date
Thu, 29 Oct 2009
Time
14:00 - 15:00
Location
3WS SR
Speaker
Dr. Wayne Hayes
Organisation
UC Irvine and Imperial College London

The stability of our Solar System has been debated since Newton devised

the laws of gravitation to explain planetary motion. Newton himself

doubted the long-term stability of the Solar System, and the question

has remained unanswered despite centuries of intense study by

generations of illustrious names such as Laplace, Langrange, Gauss, and

Poincare. Finally, in the 1990s, with the advent of computers fast

enough to accurately integrate the equations of motion of the planets

for billions of years, the question has finally been settled: for the

next 5 billion years, and barring interlopers, the shapes of the

planetary orbits will remain roughly as they are now. This is called

"practical stability": none of the known planets will collide with each

other, fall into the Sun, or be ejected from the Solar System, for the

next 5 billion years.

Although the Solar System is now known to be practically stable, it may

still be "chaotic". This means that we may---or may not---be able

precisely to predict the positions of the planets within their orbits,

for the next 5 billion years. The precise positions of the planets

effects the tilt of each planet's axis, and so can have a measurable

effect on the Earth's climate. Although the inner Solar System is

almost certainly chaotic, for the past 15 years, there has been

some debate about whether the outer Solar System exhibits chaos or not.

In particular, when performing numerical integrations of the orbits of

the outer planets, some astronomers observe chaos, and some do not. This

is particularly disturbing since it is known that inaccurate integration

can inject chaos into a numerical solution whose exact solution is known

to be stable.

In this talk I will demonstrate how I closed that 15-year debate on

chaos in the outer solar system by performing the most carefully justified

high precision integrations of the orbits of the outer planets that has

yet been done. The answer surprised even the astronomical community,

and was published in _Nature Physics_.

I will also show lots of pretty pictures demonstrating the fractal nature

of the boundary between chaos and regularity in the outer Solar System.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.