Patterns of sources and sinks in the complex Ginzburg-Landau equation

21 January 2010
16:30
Abstract
Patterns of sources and sinks in the complex Ginzburg-Landau equation Jonathan Sherratt, Heriot-Watt University The complex Ginzburg-Landau equation is a prototype model for self-oscillatory systems such as binary fluid convection, chemical oscillators, and cyclic predator-prey systems. In one space dimension, many boundary conditions that arise naturally in applications generate wavetrain solutions. In some contexts, the wavetrain is unstable as a solution of the original equation, and it proves necessary to distinguish between two different types of instability, which I will explain: convective and absolute. When the wavetrain is absolutely unstable, the selected wavetrain breaks up into spatiotemporal chaos. But when it is only convectively stable, there is a different behaviour, with bands of wavetrains separated by sharp interfaces known as "sources" and "sinks". These have been studied in great detail as isolated objects, but there has been very little work on patterns of alternating sources and sinks, which is what one typically sees in simulations. I will discuss new results on source-sink patterns, which show that the separation distances between sources and sinks are constrained to a discrete set of possible values, because of a phase-locking condition. I will present results from numerical simulations that confirm the results, and I will briefly discuss applications and the future challenges. The work that I will describe has been done in collaboration with Matthew Smith (Microsoft Research) and Jens Rademacher (CWI, Amsterdam). ------------------------------
  • Differential Equations and Applications Seminar