Date
Mon, 25 Jan 2010
15:45
Location
Eagle House
Speaker
Anne De Bouard
Organisation
Ecole Polytechnique

In this talk, we will focus on the asymptotic behavior in time of the solution of a model equation for Bose-Einstein condensation, in the case where the trapping potential varies randomly in time.

The model is the so called Gross-Pitaevskii equation, with a quadratic potential with white noise fluctuations in time whose amplitude tends to zero.

The initial condition is a standing wave solution of the unperturbed equation We prove that up to times of the order of the inverse squared amplitude the solution decomposes into the sum of a randomly modulatedmodulation parameters.

In addition, we show that the first order of the remainder, as the noise amplitude goes to zero, converges to a Gaussian process, whose expected mode amplitudes concentrate on the third eigenmode generated by the Hermite functions, on a certain time scale, as the frequency of the standing wave of the deterministic equation tends to its minimal value.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.