Date
Mon, 01 Feb 2010
14:15
Location
Eagle House
Speaker
Giambattista Giamcomin
Organisation
University of Paris Diderot

A copolymer is a chain of repetitive units (monomers) that

are almost identical, but they differ in their degree of

affinity for certain solvents. This difference leads to striking

phenomena when the polymer fluctuates

in a non-homogeneous medium, for example made up by two solvents

separated by an interface.

One may observe, for exmple, the localization of the polymer at the

interface between the two solvents.

Much of the literature on the subject focuses on the most basic model

based on the simple symmetric random walk on the integers, but

E. Bolthausen and F. den Hollander (AP 1997) pointed out

the convergence of the (rescaled) free energy of such a discrete model

toward

the free energy of a continuum model, based on Brownian motion,

in the limit of weak polymer-solvent coupling. This result is

remarkable because it strongly suggests

a universal feature for copolymer models. In this work we prove that

this is indeed the case. More precisely,

we determine the weak coupling limit for a general class of discrete

copolymer models, obtaining as limits

a one-parameter (alpha in (0,1)) family of continuum models, based on

alpha-stable regenerative sets.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.